Archive

Posts Tagged ‘how to see’

Supermoon Nonsense Redux: November 2016

November 9, 2016 2 comments

There seems to be a growing excitement about the “Supermoon” that is due to occur on 14 November 2016, when the Moon will be at its closest to Earth in this orbit, and closer than it has been at any time since 1948.

Sure the full moon will look big and bright this Sunday evening/Monday morning, but no more so than normal. It’ll be 14% larger and 30% brighter but your eyes and brain won’t see any difference from a normal full moon. It’s still worth a look – the moon is always a beautiful thing to see – but if you notice any difference in size or brightness, it’ll be your brain playing tricks on you. Maybe the power of suggestion or the Moon Illusion.

Read on to find out why it’s not any more super than normal…

Moon

The Moon orbits the Earth in an elliptical orbit, i.e. it is not perfectly circular, and so in each orbit there is a closest approach, called “perigee” and a furthest approach, called “apogee”.

At this month’s perigee the Moon will be 356,511km away from Earth. Closer than normal, sure but only 66km closer than the “Supermoon” that began all the hype back in 2011, so not that much closer.

Let’s start by comparing it to the Moon’s average distance from the Earth, which is ~385,000km. This perigee will be ~8% closer to the Earth than average. OK, that’s a bit closer, but not significantly so.

What about comparing it to the Moon’s average perigee distance, which is ~364,000km. So this “Supermoon” will be ~2% closer to the Earth than it is most months at perigee. Wow!

The brilliant XKCD sums up the Supermoon hype nicely

The brilliant XKCD sums up the Supermoon hype nicely

So what will this mean to you? Nothing at all. The Moon will be 14% bigger in the sky, but your eye won’t really be able to tell the difference. It will also be 30% percent brighter, but your eye will compensate for this too, so altogether this “Supermoon” will look exactly the same as it always does when it’s full.

As to all of those soothsayers claiming that there will be earthquakes and tidal waves. There very well might be, but they’ll be nothing at all to do with the Moon.

Post Script

Supermoons aren’t all that rare. In fact they occur once every 13.5 months.

Thanks to Steve Bell at the UK Hydrographic Office for providing the calculations below:

The Moon orbits the Earth once every 27.321 days (called the sidereal period), but as the Earth is orbiting the Sun at the same time, the Moon’s phases appear to repeat every 29.530 days (called the synodic period, which is the time we use to derive the month).

The Moon’s orbit is elliptical (a squashed circle) and so you would expect a perigee once every 27.321 days. However the elliptical path around which the Moon orbits the Earth precesses (that is it is not fixed with the perigee occurring at the same part of each orbit; the place where perigee occurs moves, or precesses) with a period of 8.8504 years, so that perigee doesn’t occur once every 27.321 days but rather once every 27.554 days (called the anomalistic period).

To calculate the frequency of perigee full moons (“Supermoons”) you need to use the equation:

1/P(perigee&full) = 1/P(perigee) – 1/P(full)

where P(perigee) is the anomalistic period = 27.554 days, and
where P(full) is the synodic period = 29.530 days

and when you put those figures in you find that a full moon will occur at perigee once every 411.776 days (i.e. P(perigee&full)=411.776), or just less than once per year.

Perseids 2013: The What, How, Where, When, and Why

August 8, 2012 Leave a comment

Here’s a simple guide for observing the Perseids 2012 meteor shower this year, covering five basic questions:
What is the Perseids meteor shower?

The Perseids meteor shower is the most reliable of the active regular meteor showers that happen throughout the year. A meteor shower is a display of meteors (or shooting stars) where you see lots of them in the space of just a few hours. The Perseids occurs around the same time each year, in mid-August, and during the peak of the shower meteor rates increase from just a few an hour (the background rate that you’ll see on any clear, dark night) up to maybe 100 or 200 meteors every hour for observers in the perfect location. Meteorwatchers in the UK will probably see dozens per hour from dark sites, dropping to a few an hour (still worth watching for) in towns and cities.

How can I observe the meteor shower?

You don’t need any special equipment to observe a meteor shower; just your eyes. Try and get as far from city lights as possible (out into the countryside if you can, or into a local park if not), and get comfortable. You might want to bring a reclining deck chair with you, as that makes meteorwatching much more civilised! Just lie back and take in as much of the sky as possible. If you’re lucky enough to see a good display of meteors, you might see as many as one a minute, maybe more!

Where should I look?

Meteors streak across the whole sky, so you don’t need to look in any specific direction, but of course if you’ve got a tall building or tree that’s blocking the view, or a streetlight nearby that’s a bit glare-y, then put these to your back. The Perseids meteors all appear to streak from a point in the sky (called the radiant) in the constellation of Perseus (hence the name) which rises in the east about 10pm local time, climbing to its highest in the sky towards dawn.

When is it happening?

The peak of the meteor shower will probably happen some time around 1815 and 2045 UT (1915 and 2145 BST) on Monday 12 August 2013, although there are uncertainties here. The peak could happen any time between 1415 BST 12 Aug and 0215BST 13 Aug. This means that observers in the UK might catch the peak of the shower, if it happens after the sky darkens on 12 August. Even on the nights on either side we’ll still see plenty. In fact the peak of the Perseids is several days wide, so you can start meteorwatching early, and carry on well after 12 August, so that even if this weekend is cloudy you’ll almost certainly have a chance to see some Perseids. Whatever night you’re out you’ll see more the later you’re up. Starting after dusk, the meteor rate will increase each night as Perseus climbs higher in the sky towards dawn.

Why do meteor showers happen?

Meteors are tiny bits of space dust streaking through our atmosphere. These motes of dust float about in space and as the Earth orbits the Sun it hoovers them up. Sometimes the Earth passes through a particularly dense clump of dust, and we get lots of meteors, in a meteor shower. These clumps of dust are left behind by comets as the orbit the Sun, their streaking tails leaving behind a trail of tiny rock particles. The comet that left behind the space-rocks that we’ll see in the Perseids meteor shower is called Swift-Tuttle, after the two astronomers that discovered it in 1862.