Posts Tagged ‘lyrid’

Lyrids Meteor Shower 2015

April 18, 2015 3 comments

UPDATE 24/04/15 Now that we’re past the peak it looks like the Lyrids meteor shower performed as expected. Reports from the Society for Popular Astronomy suggest that plenty of meteors were seen over the UK.lyr2015overview

A wider survey made by volunteers submitting data to the International Meteor Organisation shows that a peak with ZHW=18 occurred more or less on cue around midnight on 22/23 April, with a possible second several hours later around 0700UT where the rate if anything was a little higher, with ZHR=22.


Over the next week one of spring’s best meteor showers will start to put on a show. The Lyrids meteor shower peaks overnight on the night of 22/23 April 2015, and should be best around midnight.


It’s quite hard to predict when exactly the peak will occur, and indeed you’ll still see some Lyrid meteors on the nights either side of the peak, so whenever you’ve got clear dark skies between now and 25 April it’s worth gazing skywards (isn’t it always?) in the hope that you’ll see a shooting star.

Why is the Lyrids Meteor Shower Happening This Week?

Meteor showers like the Lyrids happen when the Earth passes through a cloud of dust in space, These clouds are left behind by comets as they orbit the Sun, and the cometary cast-offs burn up in our atmosphere causing lots of bright streaks of light which we call meteors, or shooting stars. On any clear dark night you should see a few shooting stars, as random bits of space dust burn up overhead, but on the nights around the peak of a meteor shower, when the Earth is passing through a dense cloud of comet-dust, the rates can dramatically increase.

How Many Lyrids Will I See? There are a few ways you can maximise your chances of seeing some Lyrids (see The What, How, Where, When and Why of Meteor Showers) but the best way is to get somewhere dark, like one of the UK’s International Dark Sky Places. On the peak of the Lyrids meteor shower, under ideal conditions, you might see around 18 meteors per hour.

The peak of this particular shower doesn’t last very long, and so the rate on either side of the peak might be quite a bit less. Nonetheless it’ll still be well above the background rate of meteors. However the Lyrids occasionally surprises us and puts on a much better show. Back in 1982 there was a short-lived burst of Lyrid activity that saw the rate increase from 18 to 90. The same thing could happen this year: you never know until you look!

Ideal Conditions It’s the “ideal conditions” clause above that’ll reduce the rate from this maximum of 18. Ideal conditions are: perfectly clear skies; perfectly dark skies, free of light pollution; and the meteor shower radiant (the point where they all appear to emanate from) sitting directly overhead. The Lyrids’ radiant will be around 30° above the horizon at midnight, when the peak is meant to occur, but you can begin your meteorwatch as soon as it gets dark enough. You’ll then have until the sky brightens again pre-dawn. . The number of meteors that you will observe every hour depends on a number of factors:

  • the density of the cloud of dust that the Earth is moving through, that is causing the shower in the first place;
  • the height above the horizon of the radiant of the shower, the point from which the meteors appear to radiate;
  • the fraction of your sky that is obscured by cloud;
  • the naked-eye limiting magnitude of the sky, that is a measure of the faintest object you can see.

Crunching the Numbers The Lyrids meteor shower has a maximum zenith hourly rate (ZHR) of  around 18. This is the number of meteors that you can expect to see if the radiant is directly overhead (the point in the sky called the zenith), and you are observing under a cloudless sky with no trace of light pollution.

However conditions are rarely perfect. In the UK, for example, the radiant of the shower will not be at the zenith; it will be around 20° above the horizon at 2200, 30° above the horizon at 0000, 50° at 0200, to a maximum height of 70° pre-dawn.

Assuming a clear night, the other factor is the limiting magnitude of the sky, a measure of the faintest object you can see. Man-made light pollution will be an issue for most people. From suburbia the limiting magnitude of the sky is ~4.5 (around 500 stars visible), so you will only be able to see meteors that are at least this bright; the fainter ones wouldn’t be visible through the orange glow. In a big city centre your limiting magnitude might be ~3 (only around 50 stars visible); in a very dark site like Galloway Forest Dark Sky Park the limiting magnitude is ~6.5 (many thousands of stars visible), limited only by the sensitivity of your eye. So in most cases it’s best to try and get somewhere nice and dark, away from man-made light pollution.

The calculation that you need to make in order to determine your actual hourly rate is:

Actual Hourly Rate = (ZHR x sin(h))/((1/(1-k)) x 2^(6.5-m))

where h = the height of the radiant above the horizon

k = fraction of the sky covered in cloud

m = limiting magnitude

Let’s plug the numbers in for the Lyrids 2015.

ZHR = 18 (maximum) h = 30° at 0000 (assuming the maximum occurs at midnight; it might not) k = 0 (let’s hope!) m = 6.5 (if you get somewhere really dark)

So your actual hourly rate under clear dark skies is (18 x sin(30))/((1/(1-0) x 2^(6.5-6.5) = 9 meteors per hour If you’re observing in suburbia you need to divide this by around 4, and in bright cities by 10! Nonetheless, even in a city you’ll see a few Lyrids over the course of the night.

%d bloggers like this: